The Theory of Block Generalized Locally Toeplitz Sequences
نویسندگان
چکیده
The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic singular value and eigenvalue distribution of matrices An arising from virtually any kind of numerical discretization of differential equations (DEs). Indeed, when the discretization parameter n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be a GLT sequence or one of its ‘relatives’, i.e., a block GLT sequence or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the applicative interest, a solid theory of block GLT sequences is still missing. The purpose of the present paper is to develop this theory in a systematic way.
منابع مشابه
Spectral analysis of coupled PDEs and of their Schur complements via the notion of Generalized Locally Toeplitz sequences
We consider large linear systems of algebraic equations arising from the Finite Element approximation of coupled partial differential equations. As case study we focus on the linear elasticity equations, formulated as a saddle point problem to allow for modeling of purely incompressible materials. Using the notion of the so-called spectral symbol in the Generalized Locally Toeplitz (GLT) settin...
متن کاملToeplitz transforms of Fibonacci sequences
We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.
متن کاملFrom convergence in measure to convergence of matrix-sequences through concave functions and singular values
Sequences of matrices with increasing size naturally arise in several areas of science, such as, for example, the numerical discretization of differential and integral equations. An approximation theory for sequences of this kind has recently been developed, with the aim of providing tools for computing their asymptotic singular value and eigenvalue distributions. The cornerstone of this theory...
متن کامل